University of Houston NASH CK - /3428
Department of Mechanical Engineering
Houston, Texas 77004

—

CHARACTERIZATION OF HEAT TRANSFER 1IN NUTRIENT MATERIALS

by
J. E. Cox 'R. B. Bannerot  C. K. Chen L. C. Witte
- Final Report, Part I

Report No. NAS-9-11676-23

31 March 1973

e

Reproducad.by a . . A :
NATIOMAL TECHNICAL
INFORMATION SERVICE /

U5 Depariment of Commerca
) _Springh‘eld‘, YA, 22151 : !

Ny
W

Spbnsor: National Aeronautics and Space Administration

Contract: NAS 9-11676

Reproduction in whole or -in part is permitted for any
purpose of the United States Government. Distribution
of the report is unlimited. '

N74~30499

‘ 3 Unclas
P . - ... _G3/05 46869
(NASA-CR-134382) CHARACTER ot AT

IZATION OF
‘ TEANSFER IN NUTRIENT HATERIAI.S, PART 1HEAT
Flna% Beport (Houston Univ.) g
: A

g’ ]

~

" | PRICES SUBJECT TO CHANG: ;




University of Houston
Department of Mechanical Engineering
' Houston, Texas 77004

CHARACTERIZATION OF HEAT TRANSFER IN NUTRIENT MATERIALS

ASCTPEECENNNEEY Report No. NAS 9-11676-23

31 March 1973

Sponsor: NASA-Manned Spacecraft Center
Houston, Texas 77058

Contract: NAS 9-11676
Technical Monitor: Dr. N. D. Heidelbaugh (DC-71}
Foods & Nutrition Branch

Preventive Medicine Division

Contract Negotiator: Mr. Louis Paletz (BC-721)
R & T Procurement Branch

Approved: ' ' .
L. C. Witte, Co-Director J. E. Cox, Director

<




TABLE OF CONTENTS

“

_.-Nomenclature

PART I

Introduction . . . . . - . e e e e s e e e e s 1

1.1 Food Heating System for Skylab

Basic Thermal Modeling of Nutrient Materials . . . . . 4

2.1 Nutrient Materials with Mixing

2.2 Nutrient Materials without Mixing for Fixed-
Temperature Boundary Conditions

2.3 Modeling Considerations for Skylab Configuration

Analytical Approcach . . . . e e e e e e e m e e 12
3.1 Boundary and Initial Condltlons

3.2 General Solution

3.3 Results for Infinite Cylinder

3.4 Conclusions

Finite Difference Approach . . . . + .« « v « « « « - . 16
4.1 Intreoduction to Descrete Methods

4.2 Explicit versus Implicit Models

4.3 Finite Difference Approximations

4.4 Application of the Finite Difference Approximations

asic Parametric Studies . . . .+ . . . o . o o . . . 27
Effect of Thermophysical Properties

Effect of Heater Qutput

Effect of Temperature Controls

Effect of Initial Temperature

Effect of Container Size

B
5
5
5.
5
5
5 Discussion

VB W N

References

Appendix:

A. Adaption of Olcer's Solution to Required Solution

B. Computer Program Description for Analytical Soclution
' Discussed in Section 3.0

C. Computer Program Description for Numerical Solution

Discussed in' Section 3.0

-

v e et



Nomenclature

A area

Bi -Biot number, eqn (2-6)
C -specific heat

D domain

Fo Fourier modulus, egn (2-5)

h convection coefficient
JL Bessel function of the first kind of order &
Tk thermal conductivity

L length of cylinder

m mass
P point
o heat transfe;
Qtot total heat‘traﬁsfer
d héat transfer rate
To constant heat flux
R radius Df'cylinder

- r radial coordinate
T temperature
T avérage temperature
t time
v - volume
z axial coordinate
a thermal diffusivity
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& Kronecker delta
P angular coordinate

size parameter

p " density

Subscripts
'c center

i initial or evaluated at node- i
3 evalued at node j

s surface

@ surroundings



1.0 INTRODUCTION

In the processing or cooking of foods, nutrienf materials are
heated up to the sterilization temperature and ‘retained at that
temperature for sufficient time to destroy harmful bacteria. When
foods are cooked immediately prior to serving, the nutrient material
simply cools from températures in the sterilization regioq down to
serving temperatufes 135-150F, When foods have been processed pre-
viously and need only to be heated for serving, the nutrient material
is heated from some initial temperature (whether room temperature or
refrigerated temperature) up to serving temperatures. The cool, pro-
cessed foods have a low level contént of harmful bacteria. However,
the rate of bacteria growth is accelerated in the temperature range
45-140F. Therefore, it is important in the heating process for
serving to be accémplished in a reasonable time so that nutrient
material does not remain in the region of accelerated bacteria growth
for too long a time. For example, it is possiblé for bacteria to
double by cell reproduction in just 20-30 minutes. Therefore, in
.the heating procesé foods cannot lingér in the critical temﬁérature
range. _ . '

For the heating of foods in the ordinary, Earth-based facility,
the primary mode of heat transfer is the convection mechanism, which
is a very effective mechanism of heat transfer for substances having
fluid characteristics. ‘Since water boils at 212F, the surfaces of
the container can be maintained at temperatures well above that of
the food substances without permitting boiling of the food. The
presence of large temperature differencés increases the rate of heaf
‘transfer. Convection heat transfer and the presence of large temper-
ature differences each enhance the heat transfer and reduce the time
required for fhe heating process in the Earth-based facility,

In the space vehicle, the heating 6f foods is desirable for £he

comfort and for the psychological benefits of the crew. However,
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“the heat transfer is impaired by two physical factors: (a) the
zéro;g_envi{%%%gnt and (Db) the:reduced pressure level of approxi-
fi:ﬁatély 5 psiZ?”ASinée the convective'moﬁe of heat transfer depends
upon bouyant forces, the zero-g environment eliminates convection;
the food material must distribute energy internally by the conduc-
tion mode, which is a less effective mechanism of heat transfer.
Also, at the reduced pressure level, water boils at 160F. Therefore,
the temperature of the walls of the container cannot be elevated '
substantially above the_temperéture of the food material--thus,
eliminaﬁing the beneficial lérge temperature difference.
There are then two primary tasks to be accomplished through
the thermal modeling of nutrient systems: (a) prediction of the
time required to heat foods to désired temperatures, and .(b) devel-

opment of parametric studies to optimize the system for minimum

power consumption.

1.1 Food Heating System for SkyLab

The physical system for the heating of foods for SkylLab is 2
tray arrangement with several receptical cavities for the insertion
of canned foods. The system uses two sizeg of aluminum cans. The
‘cavities are lined internally with blanket-type, electrical resis-
tance heaters. The heaters are thermally controlled and provide a
uniform heat flux of 2 watts per sguare inch. The sensor for the
heater control systém is a thermocoﬁple, which 1s attached to the

. cavity wall. |

The control system turns the heater off when the temperature
sensor reaches 155F and reactivates the heater when the temperature
drops to 143F., The food heating system is designed to provide hot
foods at 149+6F. The aluminum cans of food receive heat on the
sides and on the bottom with the top insulated. There are several

different initial states of the food when inserted into the heating

H<
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lsystem. The contents of the cans may be initially at a uniform
temperature of -10F (frozen storage), 60F (amblent storage) or
:;130F”1rehydrated). ‘The contents of the can are_pressurlzed to
5 psia with nitrogen. The requirements of the food heating system
is that foods be heated above 140F within 132 minutes; this time
requirément assures that the food passes through the microorganism

growth temperature range (45-140F) rapidly enough to prevent con-

tamination.
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. 2.0 BASIC THERMAL MODELING OF NUTRIENT MATERIALS

+

fThe the.m§1 analy51s of the heating or cooling of nutrient

I materlals can be considered in two parts. First, the establish-
ment of the mechanism (or mechanisms) by which heat is transferred
to (or from) the nutrient material; and second, the determination
of how heat is transferred within the material 1tself

The basic mechanism by which heat is transferred to (or f;gm)
the material can involve any combination of the three basic heat
transfer mechanisms {conduction, ‘convection, radiation). Heat
transfer fo the material by conduction involves the direct contact
of two solids where contact resistance may be a consideration.
Convection describes the heat transfer mechanism between a solid
surface and a fluid. While thermal radiation is always present,
it is particularly important in the absence of a transferring media
since the other modes are non—ekistant. However, in order for ther-
mal radiation to be significant, relatively large temperature dif-
ferences must be present

Two basic models are commonly 1nvolved in the analysis of the
transfer of heat within the nutrient materlal, itself, The nutrients
may be solid or plastic so that temperature gradients may be present
in the material. On the other hand, the nutrient material may have
sufficient fluid character so that moderate mixing occurs (whether
by movement within the container or‘by'natural convection currents).
In this latter case, the temperature throughout the material is

almost uniform (for moderate heating rates).

2.1 Nutrient Materials with Mixing

When a nutrient material has some fluid characteristics so that
mixing may occur, the presence of internal temperature gradients are
minimized, and the system can be characterized as having a uniform

temperature at any instant. This basic model (illustrated in Fig. 2.1)

8=



1s "known as Newtonian heating (or coollng) and is the earliest
model employed in transient heat transfer analysis. At any par-

;tlcular instant, the nutrient system has a uniform temperature.

q

-Fig., 2.1: Newtonian Heating Model
An energy balance on the system provides

aT ar | o
q = me T PeVap (2-1)

If the heat transfer at the boundary is by convection, the heat
transfer rate can be expressed in terms of the convective mechanism

g =tha_ [Te - T(¥)] . ‘ (2-2)

If egns (2-1) and (2-2) are combined and integrated, the tempera-

ture response of the system becomes

s .
—at
v

h
= e k - ‘ (2-3)

Tew — T(t
Te — T,
1

For a cylinder of radius R and length L

A

v - R T l) : (2-4)
If the Fourier modulus is defined as
at
RB

Fo (2-5)



‘and the Biot nunmber is defined as

hR

N (2-6)

Bi =

then, the dimensionless temperature response of the system can be

written as

To — T(t) . R
_ _ R 2-7
To - T, exp[ 2 BiFo (l + L)] | ( | )

which is shown in Fig. 2.2.
The Newtonian model also app;ies to soplid materials whose
thermal conductivity is &ery large (such as silver or copper);
a more accurate statement would be that the internal resistance
to heat transfer by conduction is very small as compared to the
surface resistance to heat transfer by convection (Bi < 0.1).
The Newtonian model relations can be modified to include the thermal
radiation mechanism; howeﬁer, the ensuing integration is not straight-

forward.

2.2 Nutrient Materials Without Mixing for Fixed-Temperature Boundary

Conditions

When a nutrient material is of rigid texture (i.e., sufficiently
solid to avoid mixing or convection currents), the transfer of enerqgy
“internally is by the conduction mechanism. The basic partial differ-
ential eqﬁation‘for the axisymmetrié cylindrical configuration (as

shown in Fig. 2.3) may be written asg

2 2 .
ﬁ__g.+.];ﬂ+.a_g‘_=l£ (2-8)
Jr r ar kY4 o at .

for the case of constant thermophysical properties.‘ The solution

of egqn (2-8}, subject to specified boundary and initial conditions,
provides the local temperature distribution T(r,z,t} at any instant.
From the temperature disfribﬁtion, the response of the average tem-
perature of the material {or the center temperature} to a sudden
change in environment at the surfaces of the finite cylinder can be

established. e
| ' 20<
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Fig. 2.2: Temperature Response of a Finite

Cylinder for Newtonian Heating
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Fig. 2.3: Analytical Model of a Finite Cylinder

Analytical-solutions of eqh (2-8) .are available [1,2]* for
basic boundary and initial conditions. For example, if the nutrient

‘material is initially at a uniform constant temperature Ti'
T{x,z,0) = T, ‘ {2-9)

and if the surfaces of the cylinder'are suddenly éhanged and main-

tained at a uniform temperature Ts
CT(r,L/2,t) = T{r,-L/2,t) = T(R,z,t} = T (2-10)

The solution of egn (2-8) for the initial and boundary conditions

{2-9) and (2-10) is

*Numbers in brackets indicate references.

4 Th
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T(r z, t)— T @ b .
S .y AR 4 g_ 4R
T i Z AnPm J°’\“HR)‘_’°S_(“m L exP[ {“n Sy JFo ]
i =l mel o
- | (2-11)
_ 2 _ m+l 2
where An = ____—“nJl (o) and Am = {(~1)

by = (2m - 1)172- and  J (un)

The evaluation of egn (2-11) involves the summation of a Fourier
series which converges véry slowl?; special technigques are generally
required to accelerate the convergence. From the evaluation of
egqn {2-11) at a particular point, the response of the temperature
of that point with time can be determined. For'example, if the
surfaces of a cool cylindrical container at a uniform temperature
Ti were suddenly changed to a warmer temperature Ts' it would be of
interest to know how fast the "cold spot" in the system responded.
Egquation (2-11) WOuid then be evaluated at the centroid of the
homogeneous cylinder. (r=0, 2z=0). Fig. 2.4 shows the response of
the dimensionless center temperature,_Tc, with dimensionless time.
It is also of interest to know how the average temperature of

the system is responding which can be obtained by

1Y |
T(t) = G‘IO T{r,z,t)dv (2-12)

where eqn (2-11) provides the temperature expression for substitu-

tion into eqn (2-12).
() - T o o .
4 2 {2 2 4R%) B
T Z:: z=1 “r? p’rﬁ exp[ (“n + Uy 13 /Fo] {(2-13)

Fig. 2.5 shows the response of the average temperature of a cylinder

in dimensionless form. _
Additional information can be gained from the solution of
egqn (2-11). The amount of heat transfer can be established by any

AT
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of several methods. Of particular'intgrest is the fraction of the
total possible heat transfer which has pccurféd up to any particular
time.  For example, if a long enoudgh time is provided the entire sys-—
.tem will assume the surface temperature 'I's and the total heat transfer
to the cylinder can easily be determined by the change in the internal
energy of the cylinder, namely

Qe = me(T, - T,) _ S {2-14)

The heat transfer to the cylinder from t = 0 to t = t can be
written as )

0(t) = melT(t) - Ti]" (2-15)

The fraction of the total heat transfer transferred to the cylinder
during the time interval t = 0 to. t = t can bé‘expressed in terms

of the average temperatﬁre of the cylinder

T, ., - T. - |
gL.(t) = ,](_,t)_ — | (2-16)
tot S i

Since the right-hand side of egn (2-16} is presented gtaphically
in Fig. 2.5, the dimensionless heat fransferris-also reﬁresented
bf Fig. 2.5. The fraction of the total heat transfer is also pre-
sentgd in different‘form in Fig. 2.6.

"Fig. 2.2 through 2.6 present the thermal characteristics of
finite cylinders for various size cylinders (i.e., for various L/R
- ratios). For the cases presented, the éylihder is exposed to iden-
fical conditions on each surface. {(i.e., the iadia; surface and the
two ends of the cylinder). However, the results can be used for
the finite cylinder, which is insulated on the ends: this case cor-

responds to an infinite L/R ratio where end effects are neglected.

2.3 Modeling Consideration for Skylab Configuration

As discussed in the Introduction, the absence of bouyant forces

eliminates natural convection currents in fluid-like substances. The

5.b=<
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Fig. 2.6: Percentage of the Total Heat Transfer
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4distrfbdtion'of heat within the nutrient material is then dependent
:on the conduction mode. The conduction mechanism can be adequately
described by energy relationships. Thé two-dimensional, traﬁsient
conduction equation in cylindrical coordinates was given as egn (2-8)
for the case of constant, uniform thermophysical properties. The
solution of the parﬁial'differential equation for a particular appli-
cation requires the establishment of appropriaté initial and boundary
conditions which simulate the physical situation.

There are unlimited combinations of possible boﬁndary and ini-
tial conditions. However, the many possibilities generally can be
categorized into one of three broad claésifications: (a) specified
‘surface temperature; fb) specified surface conductance; and (c)
specifiea surface heat flux. In the preceeding section, the surface
temperatures were specified; solutions associated with this type of
boundary condition are usually not too difficult, but, the boundary
condition does not accuratély describe real-world situations. The
other two classifications of boundary conditions occur more frequently
~in nature. The speéified.surface conductance describes the inter-
actian of a fluid and a sclid surface through the convection mechanisn.
Although the sﬁrfacé conductance (or convection copefficient) is
assumed constant, the heat transfer rate is not if there is a change
in the temperéture of the solid surface and/or the fluid. The third
classification 6f boundary conditions is the specified surface heat
flux, which accurately describe situétions involving electrical ‘
heating elements, such as.in £he SkyLab system. In the SkyLab con-
figuration, a uniform heat flux acts on the sides and bottom of the
container with the top insulated. In ofder to simulate the SkyLab
system, the model must be capable of describing intermittent heating
periods,

Due to the presence of zero-g conditions, the boundary condi-

tions may be complicated somewhat. If the nutrient material fails

28
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"to "wet" the surface of the container, the food may "float" in a
paftially filled container, Tﬁe,situation may occur where the

:Eoodfheparates from the heating surfaée; The nitrogen gas filling
the voids surrounding the nutrient material has a wvery low thermal -
conductivity and acts as an insulator between the heating surface
and thé nutrient material. In this situation, thermal radiation
may be the predominate mechanism to be considered. Since the tem-
perature of the heating surface is only 149£6F, the radiation mech-
anism is not an effective mode éf.heat transfer. Since heat is not
effectively transferred to thé food, the heater is only heating the
wall of the can. When its temperature exceeds the cutgff, the heater
is deactivated. The heater will in fact be off most of the time, and
the heating time will be extended substantially;

In modeling food substances, the nature of thernutrient materials
themselves is an important consideration. Foods have hetrogeneous
character (i.e., a non-uniform composition such as soups, stew, etc.).
It is standard practice in modeling such systems to establish some
"weighted" average values of the thermophysical properties for the
various food components and theﬁ to treat the material as homogenéous
in nature. In the .zero-g environment, the nutrient material may

_form internal voids or cavities which may be filled with gas. The
presence of voids in the material may effect the internal heat
transfer substahtially (as compared to the hetrogeneous character-
isfiés of several food substances) because of the insulating effect
‘of such cavities. The available data concerning the thermophysical
properties of hutrient materials are somewhat limited. The data
are scattered in many diverse sources in the literature. Also, in
gathering data from‘the literature, one questions the validity of
some of the data because of the experimental technigues employed in

the measurements,

3.9
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3.0 ANALYTICAL APPROACH

3.1 Boundary and Initial Conditions

Por the model illustrated in Fig. 2.3, the conduction relation
for the heating of nutrient materials was given in egn (2-8) for
the case of constant thermophysiéal properties, To solve this rela-
"tion, appropriate initial and boundary conditions must be selected
which best describe the physical configuration of the Skylab system.
If the nutrlent material is 1nlt1ally at a constant, uniform tempera-

ture, the initial condition becomes

. T(r,z,0) = T,. o | (3-1)

The boundary condition for the insulated top is

aT(r:L/Z:t)
9z

= 0. _ | - | (3-2)

For the intermittent heating of the sides and bottom, the appropriate
boundary conditions can be written as

gﬂ-(constant heat flux:
AT (R,z,t)  2T(r,-L/2,t) _ heater on)

ar 32 - : : L (3-3)
0 (insulated; heater off)

Along with the phys1cal boundary conditions is the stipulation that

the temperature’ remain finite along the ax1s of the cylinder.

3.2 General Solution

There is no single analytical solution which will sétisfy all
these conditions simultaneously. However, a piece-wise solution
can be formed by adding together a series of solutions, each valid
for -a short time inecrement (e.g., one heating period). There are
actually only two different solutions reguired. One for the time
when the heater is on, and the other for when the heater is off
(which is really a special case of the first with g = 0).

| 20<
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Olcer [37 developed a general SOlution (additional details in
Appendix A). For a flux, g,, applied at the radial and bottom sur-
faces, insulated top, and. an arbitrary initial tﬁmperature distribu-
tion, T(r,z,0} = Ti(r,z) (For the second and succéeding heating periods,
the initial-temperature is non-uniform.), the transient axisymmetric

_ temperature response isz:

L
R 2 '
2 b |
T(r,z,t) = I3 J J Ti(r,z)rdrdz + [ﬁi 2at {qo}
O _ L [ P
2

e a

LXL 4 12 2k

16m S Jo (wyr) cos |2+ M2 exp (-ad ®t)
+ RL, EO " L2 L mn
= 2
= 2(l.+ 6n0) Jq (umR)

=
il
o
=’

o T '
Jo(umr) cos (?; + an) Ti(r,z)rdrdz

\ -

[
NE Nl
(Du_ﬂw

- B 5 e {20}

mn%m (3-4)
where {if} indicates the two cases of héafer on and off
e
where umR z 0 is the mth root of
" (4R) = 0O | | (3-6)

and the prime (t} denotes differentiation with respect to the argument.

i<
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For'the first heating period the initial temperature is
uniform and

-

T.{r,z) = T. ' e, f3-7)
i i

so that the first integral becomes equal to Ti' and the other
integration involving Ti vanishes. .. |

For a given initial temperature distributibn and surface heat
flux, eqn (3-4) can be used to calculate the local temperature within
the cylinder, T(r,z,t). The highest teﬁperature will be at the bottom
corner, point (R,0). Therefore, the temperature T(R,0,t) is monitored
until it reaches the predetermined maximum value. At this time, t,,
the entire temperature distribution, T(f,z,tl), is evaluated; this
temperature distribution becomes Ti(r,z) for the second phase of the
first heating cycle. With g, = 0 (hgatér off) eqgqn (3-4) is used to
defermine the temperature within the food. When the monitored temper-
ature at the bottom corner'(R,O) drops to the predetermined minimum
value, the heater is ggaiﬁ activated. The temperature distribution
at this time becomes the initial condiﬁion for the first phase of the
second heating cyclé. Equation (3-4) with non-zero boundary heat flux
is used to determine the temperature. This procedure is continued
until Ehe food is heated to the desired level. The average food tem-
perature can be determined .either by averaging the temperature distri-

bution:

T(r,z,t)rdrdz . {3-8)

e
2
il
]
LM
-
N He S v

or by dividing the total heat added to the food by the heat capacity
of the food. Hence

-
T(t) = do (2TRL + TIRT) ton _ (3-9)

C

" where ton is the total "on-time" for the heater.

ATy,
r:‘,-:e <
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u,f“Results for an Inflnlte Cylinder

The analyhﬁcal method outllred above has been programed and run
_for—the SpaL] al caseé of an infinite cyllnder (n = 0, L + «} heated
on the cymrﬂmrlcal sur faces only [4]. An 1nf1n1te1y long cylinder is
equivalent to a finite cylinder insulated on both ends. A discussion
of the program and a simplified flow chart appear in Appendix B.

Figure 3.1 depicts typical temperature distributions as a func-
tion of non-dimensional radius, r/R (with heater at 14248F). Curve 3
represents the distribupion whén_the wall temperature first reaches
Tmax-(i;e., the end of the first heating phase)}. Curves 1 and 2 are
the distributions at one-third and at two thirds of the total heating
time of the first phase. The remaining odd numbered curves indicate
the distributions at the end of each successive heating phase. The
even numbered curves 1nd1cate the distributions at end of the succes-

sive insulated phases (i.e., just before the heater is reactlvated)

3.4 Conclusions

while satisfactory results were gbtained with the analytical
model, it was décided not to be continued to the finite cylinder case
for the following reasons:

1. A discontinuity always exists when switching from.one

: solutlon to the other due to the discontinuous manner
in which the flux is sw1tched on and off The effect
of this discontinuity is minor.

2. Considerable,computation time is necessary and the time
required will increase considerably by the inclusion of
the double summation required for the finite cylinder.

3. A finite difference model appeared more attractive.
Computation time was reduced and the finite difference

- model is more versatile. The inclusion of different
boundary conditions and a study.of heterogeneous effects

are reasonable extensions.

23<
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4.0 FINITE DIFFERENCE APPROACH

4.1 Introduction to Discrete Methods

The ultimate goal of discrete methods is the reduction of a
contlnuous system tc an equivalent lumped- palameter system whlch

is suitable for solution on a digital compuhex. The basic approx-

“imation involves the replacement'of a continuous domain D by a matrix
of discrete points (nodes) within D, as shown in Fig. 4.1 for two

dimensions.

] —, ’ LI \
CTNLIIID
\- - LRI -'-nl

\iiiiiiid

a. Continuous _ o - b. Discrete.

Fig. 4.1. Discrete Approximation of a
Continuous Two-Dimensional Domain

Instead of developing a solution defined everywhere in D, only

-approxlmatlons are obtained at isolated p01nts {(nodes}), P Inter-

I

and derlvatlves may be obtalned from this
discrete solution by interpolation.

mediate values, integrals,

This mathematlcal dlscretlzatlon

replaces the derivatives by discrete approximations, (e.g., finite

difference approximations}.

At a given node, at a given time, the values of the coordinates

define a unique location. For an axisymmetric cylindrical coordinate

system, the set (ri, Zj' t(n)} define such a location where ri is the
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w}%ﬁfﬁi'coordinate, zj is the axial coordinate, and £ is the time

after n time steps. Hence the dependent variable (temperature in:
*“his;hase) at this point is

T = T{r., z., () = oin) | (4-1)
1 J 1.] .

1 i ;- . ] . r . s . d
At a given time, the nodes (ri, zj) (rl_l zj) (rl zj_l) an

.(ri—l' zj 1} define a subregion in the shape of an annulus of

inner radius r. , outer radius r., and thickness z, - =z, as
i~1 1 i i-1
depicted in Fig., 4.2,

\[
\

{l

—_Zf-'i—l
N

Fig. 4.2. Subregion Formed by Nodes

(rsozy), (ry_q.25), (ry.zg z

i ]—l)' and (ri_

1%5-1)

4.2 Explicit versus Implicit Models

The standard finite difference approximations for partial deriva-

tives can be found in most applied mathematics texts {5,6,7] and are
| b=



18

Trm——
‘dedlt with in more detail in the next section. In general, there

are two_techniques available fc}_approximating the differential
j;quafibn in the transient problem. Tﬁeée are the implidit and
explicit methods.
In the explicit technigue, the future temperature at some node
(i,j) is expressed in terms of its present temperature and that of

surrounding nodes; that is, (for a first order apﬁroximation)

(n+ly _ (n) (n) i(n) © p(n) (n) -
Ti,5 f(Ti{j—l' Ti,5+1° Titl,5 Ti-1,5’ Ti,j) (4-2)

where the form of the functiqhal relatibnship depends on the govern-
ing differential equation. Since the initial temperature distribu-
tion iz known, this technique can be used successively at each node

to advance the solution one time step (i.e., eqﬁ (4-2) is-.applied k
times if there are k nodes). The proceés can be repeated indefinitely
ﬁntil the required time has elapsed. .The accuracy of the solution
depends largely on the spafial nodal spacing. The closer the nodes,
{hence, a larger number of nodes for a given physical system) the

more nearly accurate the approximation. The fundamental limitation

of the explicit representation is that for argiven nodal spacing fhe
maximum rate ' at which the solution can be propagated {in time) is set.
.fIf this rate is exceeded the solution becomes unstable). In general,
the more sparse the nodes, the smaller the maximum allowable time step
(t(n+1) - tgtm = At) becomes. This can be a severe limitation to the
exﬁlicit method for a given application. To increase the maximum At
reqﬁires more neodesg, which in turn requires gdditional computation

at each time sﬁep. Thus, even though fewer time steps may be needeqd,
each one becomes more tedious. General rules have been developed for
the maximum time étép allowable under various conditions [8].

The implicit technique removes the possibility of this instability

at the ekpense of increased computational.complexity; In the implicit

technique, the future temperatures at a given node (i,J) and the

s
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surrounding nodes are éxpressed in -terms of the present temperature
of node (i,j); that is, (for a first order approximation)

(n+1> {(n+t1)D (n+l) = qin+l) p{n+lyy = p(n?
f(Tl j-1' Ti,j+l' T 1, 5’ Ti+l,j' i,] )= Tl 3 (4-3)

where again the functional form of £ depehds on the specific problem.
“This relationship must be determined at each node leading to a set

of simultaneous, linear algebraié equations to be solved at each

time step. ‘This method is unconditionally stable in time but, of
course, can introduce large rpﬁnd—off errors if the time step is
excessive. Again it is noted that while the iﬁpliéit method seems

© . more attractiﬁe because of its stability characteristic, the requife—
ment in the 1mp11c1t model of solv1ng a set (one eguation for each
node) of simultaneous equation can hardly be compared to the solutlon

of a set of independent eguations requlred in the explicit model.

4.3 Finite Difference Approximations

The following are the finite difference approximations reguired

ptn) L ogpln) ‘Central difference
AT i+1,5 = i-1,1 , .
as | = - (4-4) approximation of
3T 14,5 Titl T Ti- the first derivative
AT T;ii 5 7 2T(n% + T;ni j _ Central difference
S;g] = ~'r (4-5) approximation for the

1,3 ‘ ( ivl " i—l\ . second derivative
) g _

p{n+l) qind . The forward difference
ﬁz—‘ = =) 1r ) ' (4-6) approximation for the
at i,3 i1 by first derivative

The other reguired approximation follows.
Due to the complexity of the implicit model it was decided to
use an explicit model for the problem first. The explicit finite

difference approximation for egn (2-8) around the node (i,3j) is:

=8=
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(ny - - _ (ny (ny - mind _ min)
Tivlog ~ 2783 F Tio1,5 L1 Tiviig ~Tici,g
) 2 : R
(ri+1 ri—l) Ty Tidl T Tiaz
- |
(N _ om(N) , m(D) (n+l) _ mim)
Tigaer ~2Ti,5 " Tisr 1% T h (@7
2 a t(n+1) _ t(n) y

2441 T Z3-1
(=)
Equation (4-7) applies for any nodal spacing. However, it is
convenient at this time to assign a uniform nodal network. At each
zj there are N radial nodes. Node 1 is on the'cenfer line of the
- . eylinder; node N is on the ci;cumferencial surface. The nodes are
equally spaced; i.e.,

R

Ar = e (4-8)
There are M equally spaced nodes in the z direction. Hence,
pz = —Z— o (4-9)

M- 1
The time steps are also of equal length and are denoted At. With

the nodal matrix thus defined eqn (4-7) becomes

(n) - (n? (n} (nd _ (n)
i1,y " *Ti 5t Tic1y 1 Tivi, g = Ti-1,4
(ax)® . (i-1) (Ax) 2 (Ar)
TR oap(M) 4 p(M) p(n+l) _ pen) .
i,j+1 i, 3 “i,3-1 _ 1l 7i,] i,7 (4-10)
(Az)* T -(at) )
The required temperature is Ti j(n+1). From eqn (4-10)
(n+l) _ q(n) & 1 L !
T3 T Tien,y ¢TGP G (a0 2
oy ! 1
+ {n) 11 - 2q(at ( + ')
i,3 [ 7 a(2t) (ar)?® (az)* ] (4-11)
(n) gyl 1 .
* T, cY T T 2D (e

alAt) (n) alAt) o)
+ n n
Te2)® Tiiel Ta)? Ti,i-l 0 2ge
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If : : ‘a{ At
(

alat) oy
(az)® z

alpt) _ T

2(i-1) (ar)® = 2(i-1)

then

and eqn (4-11) becomes

;L ' -
p(ntly - p(n) r_£$_l_1 M o+ (m rl - 2M_ - 2M J
i,J i+l,3 2(i-1) 4 "¢ i,Jj L ‘ z
_ | (4-12)
(ny [_2i-3 (n) (n)
* Tl 1,3 L2(l l)] Mr + Ti,j+l Mz + Tl -1 M,

Equation (4-12) is the general'form of the algorithm required to
generate the temperature at all interior points (i.e., those not
directly effected by the ﬁoundary)

At the center line, i = 1 and the coefficients of T{D)

_ itl, ]
become infinite in egn (4-12). However, by symmetry
(n) _ q(n) o -
50 = T )
so that for 1 <« j < M
p(ntl) -0y T3 _oom  ~ oM 1+ T(R) 2y
ll_j' lf:}l._ 24 +
' (4-14)

+ T(n) M + T(n) M
ll‘] l' Z

At the outer radius for a constant heat flux boundafy condition

T
2=

ar 'r=R = 9o - ' _ (4-15)

The finite difference approximation to egn (4-15) is (at i=N)

30<
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(n) - min?
TN+l,J ™N1,9 q
2{(Ar) k
o : _ .
(n) - min) 9o : (4-
Tarl,5 = Tgog,q * R 2(an). | (4-16)

Substitution of egqn (4-16) into egn (4-12) yields for 1 < j < M

(n+1) _ (ny _ a T, (ny
TN 5 2Mr TN 1,3 f [} 2Mr 2MZJ TN,j
. _ ' (4-17)
5 - 2N-1 2{Ac)q
+ M (n) (n) . fal .
z N, 341 T TN, 5-1d Yooy Tk M
At the top surface
aT 0. . -
selamrs2 = 0" - (4-18)
The finite difference approximation to eqn (4-18) is: {at szi
(n) _ min} -
i+l T Timel <0
or
p(N)  _ op(D) . -
T ™ Tima ' (4-19)

Substitution of egn (4-19) into egn {4-12) vields for 1 < i < N

(n+ly_ _gi:l_ (n) [ _ _ (n)
TioMm ~2¢-0 M Tierm P02 2sz Ty
' ' (4-20)
_2i=3 (n) (ny
* 2(i-1) ﬁr Tici,m* My Ty om -

At the bottom surface
aT _
az‘z=-L/2 = do (4-21)

L
3i<
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or T .
: T(n) — D)
i,0 i,2  da
2(sz) Tk
and (n) _ mtn) , 9o2(8z) -
| T{N) = TN + S . | (4-22)

The solution at the bottom surface bhecomes for 1 < i <N

(n+ly _ _2i-1 (n) [ R - cn)
Ti,1 20 Me Tien,n vLE oM - M J Ty
_2i-3 0 o(n) (ny _
+f2(i—1) Mr T1 1, 1 +.2Mz Ti,z (4-23)
M 2(Az)
2

k qO .

At the top edge} i = Nand j = M so that from eqn (4-17) and
{4-19)

(n+ly _ (n) [ _ B ] (n)
TN M ZMr TN 1,M 1 2M 2M T
, (4-24)
, (n) 2N-1 2 {Ar)
* 2Mz TN M~l + 2 ({N=-1) Mok o

At the bottom edge i = N and j = 1 so that from egn (4-17) and
(4-22)

(n+l) _ (n) [ _ _ o
TN 1 2mM T 1-2M - 2M 2 TN
tn) 2N-1 . 2(Ar) : _
+ 2Mz TN 2 + 2 (N-1) Mr X do {(4-25)
2{rz)
+ Mz X o P
At the bottom center TO 1= T2 1 and from eqn (4-23)
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(n+l) _ oy (n) [ - _ (n)
%le ) M T +11 - 2m ZMZ] Tl!1
e (4-26)
-’-:,':;,:,-J, (n) Z(AZ)
+ 2Mz Tl 5 + X M'Z o
At the top center T, . = T2 N and from egn (4-20)
(n+l) _ oy (my 4 7y _ _ T en)
Tl N r T2 N Ll 2Mr- ?sz Tl,N
. (4-27)
(n)’
+
2Mz Tl N-1

4.4 Application of the Finite Difference Approximations

A thirty-six node model (6 radial & 6 axial nodes) was selected
for the homogeneous cylinder. Equations (4-12), (4-14), (4-17), (4-20),
(4-23), {(4-24), (4-25), {4-26) and (4-27) were used in a Fortran IV
G program. A simplified flow chart appears in Appendix C.

A simplified analysis [8] was made to determine the maximum prop-
agation speed of the solution. From'eQn (4—l2)'it is apparent that
if the texrm |

1 - 2M - 2M)

is negative,.thep the larger Ti?%, the smaller TG?Tl) . This result
is physically unreasonable. Therefore, time increments must be re-

stricted such that

1 -2M -2M >0
r Z

_ 2a(4t) _ 20(At)

(or)? " (a2)® ~ °

y L 1
{ar)? (Az)}® = 2a(at)

(4-28)

33%
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For the can sizes expected on Skylab (R < 2 inches, L < 4 inches),

with a thermal diffusivity of water (a =5 yx 1072 ft?®/hr) and for the

nodal network assumed {ar = %, Az = %), the restriction in egn (4-28)
" becomes '
25,25 1
R® 1° 10-% (At)
25 + 25-< 100

1/36 -1/9 . {At)

or , o
At < 100 = ,089 hr ~ 5 minutes

25(36) + 9(25)

Henée the time steps cannot exceed 5 ninutes each. From experi-
mental evidence, it is known that as the can approaches its maximum
temperaturé, the heating phaée of heater cycle may be as short as a
few seconds. 1If the model’'is to be capablé of simulating this heating
periocd, the time step should be on the order of a second. Since the
time steps requirea are well below the maximuﬁ allowable, the explicit
model will be sufficient. -

The predictions of the finite-difference model can be demonstrated
by looking at the graphical presentations in Fig. 4.3, 4.4 and 4.5.

The femperature specification for the heated food is 149+6F. There-
fore, the thermai confrol on the uniform heat flux heater are speci-
fied accordingly. When the hottest point on the Heating surfaces
reaches 155F, the heater is deaétivatéd and the food stuffs are treated
as an adiabatic system (i.e., no heat losses); when the hottest spot

on the surface has dropped to 143F, the heater is reactivated, and the
cycle continues until the average temperature of the_food reaches 149F.
In each of the cases shown, the food was assumed to have thermal dif-
fusivity of water and a uniform surface heat flux of 2.0 watts per

square inch was employed. In each of the figures, two temperatures

d4=
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are shown -~ the averaée temperature of the food and the temperatﬁre
of the coldest internal point.

| The temperature responses of the small container and the large
‘contalner are shown in Fig. 4.3 and 4.4, respectively. Two 1n1t1al
tempetature conditions ('I'i = 130F and 'I‘i = BOF) are presented in
each figure. This same model was employed in evaluating the tempera-
ture responses for an initial temperature of _10F and the results
-ate shown for both container sizes in Fig. 4.5. 1t should be cate—
fully noted that this particular model did not have the capacity for
including the latent energy associated with the phase change in the
thawing process. If the nutrient materials were similar to water,
the'latent heat of fusion (or melting) is 79.7 calories per gram
(143 BTU/1bm). If the melting process were approximated by a "lumped"
parameter (i.e., assumihg that there are no temperature gradients
present in the nutrlent materlal during the melting process}), the
additional time requlred would be

' 0.30 hours (small container)
(.39 hours (larqe contalner)
The finite- dlfference ‘model can be modified to 1nclude the latent
energy of thawing to prov1de more accurate predlctlons of the re-
quired heating times.
The basic finitefdifference model.hes a number of input parameters.

Each of these ﬁarameters cen be investigated individually to determine

'its influence on the temperature response of the nutrient material.

a5
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5.0 BASIC PARAMETRIC STUDIES

The heat transfer analysis provides the vehicle for perform-
ing parametrlc investigations. Parametric studies involve the
variation of each physical parameter individually to establlsh
the effect of that phy31cal parameter on the: thermal response of
the system. Thermal considerations in the de51gn of food ‘heating
systems include the effects of the following physical quantities:
(1) the thermophysical properties of thé nutrient materials; (2)
the power rating of the heater (i.e., the energy per unit surface
area); (3) the control temperatures which activate the heating
- element: (4) the initial temperature of the nutrient material;
and (5)-the dimensions of the container. In the heat transfer
field; the temperature is generally_présented as a temperature
difference ratio and time in dimensionless forms using Fourier
modulus; however, the fqllowing resulté employ real time and

temperature.

. 5.1  Effect of Thermophysical Properties

The thermophysical properties of the nutrient material have
a subétantial influence on the requirea heating time. In the
conduction mechanism, the food must be able to conduct energy from
near the heating surface to the center ¢of the container. Of
particular interest is the thermal diffusivity'a which is the
thermal conductivity divided by the product of the density and
heat capacity (or specific heat)‘i;e.,ra = %E . Rather than
showing the temperature response of particular nutrient materials,
the results are shown in terms of a ratio of thermal diffusivities
(more specifically, the thermal diffusivity is normalized by
dividing by the value for watér at standard conditions). The

response of the average temperature of the nutrient material is

presented in Fig. .5.la for the smaller container and Fig. 5.1b

a6<
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Fig. 5.la: Effect of variation in Food Properties
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Fig. 5.1b: Efféct of Variation in Food Properties (Large Container)
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\\‘

for the larger container,

P

'5.2 Effect of Heater OQutput

‘-

If a nutrient material is heated by a uniform heat source
which is not controlled, the heater would remain activated
continuously until the desired average temperature of the food
had been attained. However, if the nutrient ﬁéterial near. the
heating.surfaces is not to experience exéessive local temperatures,
a control mechanism must be included‘in the heater circuit. The
temperature-time relationships for the temperature controlled
heater are compared to the uncontrolled heater in Fig. 5.2a for the
.smali container and Fig. 5.2b for the iarger container. The
average and "coldspot” teﬁperatures are depicted.

If the heater were continucusly ac¢tivated, a decrease in éhe
héater output by one-half would incéease the heating time (to a
particular temperature) by two. However, when a temperature-
controlled heater is empioyed, this effect is alfered substan-
tially. The effect-éf a variation in the surface heat flux is
'demoﬁstrated'ih Fig. 5.3 for the small'container when the initial
temperature is 70F. The interesting point is that when the uniform
surfacé heat flux is reduced by a factér of 8 from two (2) watts
per square inch down to one-fourth (%) watts per sguare inch, the
heating time did not increase by a factor anywhere near 8. For
examplé, the nutrient material was heated from 70F to 130F in 0.62
hr for the‘high surface heat flux case‘ana in 1.07 hr for the low
surface heat flux case. In this situation when the surface heat
flux was decreased by a factor of 8, the heating time was not even
doubled. 1In optimizing a heating system for nutrient materials,
the output of .the surface heater is an important consideration.

The reascon the lower surface heat flux does not reguire a propor-
tionally longer period of time is that the heater remains activated

a substantially longer period of time prior to the initiation of a

a9<



~Fig. 5.2a: Comparison of Thermally Controlled Heater
with a Constant Continuous Heater
{(Small Container)
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Fig. 5.2b: Comparison of Thermally Controlled Heater
with ‘a Constant Continucus Heater
(Large Container)
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, periodic heater action. For the case of the higher surface heat

i flux, the heater begins its cycling pattern early.

5.3 Effect of Temperature Controls

The level of the temperature controls on the uniform surface.
heater has a great influence on the required heating times for the
nutrient materials since the longer the heateficycling proecess can
be delayed, the shorter the required heéting time. Although the
Skylab system has established the teﬁperature control range of the
heater, an investigation of the control levels can provide insight
into the operational characteristics of the system.

In studying the effect of the thermal control of the surface
heater, two temperatures are considered - the surface temperature
at which the heater is cut off and the surface temperatﬁre at thch
the heater is reactivated. In the model of the cylindrical con-
tainer for the Skylab system, the point affected greatest by the
surface heaters is the iower corner; the lower éorner is the
intersection of the fottom heated surface with the curved-side
' heated surface which corresponds to tﬁe location r = R, z = 0 in
the model (Fig. 4.2). . It is this point in the model which is
used for the thermal control of the heéter. Three situations afe
considered for each size container:

(a} Variation of the heater cut-off temperature (150F, 155F
and 160F for a given heater cut-on temperature.(léoF) as shown in
Fig. 5.4, | ‘ -

(b) Variation of the heater cut-on temperature (135F, 140F,
145F and 150F) for a given heater cut-off temperature (160F) as
shown in Fig. 5.5. .

(c) Variation in the level of temperature control for a

specified temperature difference To = TOn (lOF) as shown in

ff
Fig. 5.6.

In comparing the 6 figures, the most significant effect on
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the heating times occurs when a constant temperature difference
Toff - Ton is maintained, permitting the range of the thermal
control to change. | '

5.4 Effect of Initial Temperature

The lnltlal temperature of the nutrlent materlal is the most
ijnfluential factor on heating-time reguirements. . Three initial
_temperatures of food substances-are involved, namely l30F, 60F,
and -10F. The thermal fesponée of each container is shown in
Fig. 5.7a and 5.7b for the 60F and 130F initial conditions. The
thermal response of each container for an initial remperature of
- -10F is shown in Fig. 5.7c. It should be noted that the predic-
tions shown in Fig. 5.7c do not include the energy of melting
associated with the ordinary “théwing"lprocéss} The inclusion of

the phase change increases the heating-time requirement.

5.5 Effect of Container Size

gince the size of the containers has already been estab;iéhed
- only the two container sizes to be used in the heating tray are
included. Typlcal response characteristics are shown 1n Fig. 5.7c.
Parametrlc studies could be performed to establish the effect of
length~-to-diameter ratios for the cyllnder. It is desirable during
the heating process to have the maximum heat transfer surface area
- per given volume of food. For a cylindrical container heated on
.the sides and bottom this size parameter, the ratio of heated
surface area to volume, is -

TR + 2mRL 1 2
= = — 4+ — —
? TR L L. R (5-1)

For the containers used in this study, the smaller contalner has
a 30% larger size parameter, indicating that the heating is approxi-

mately 30% faster. This rough estimate is verified in Fig. 5.7c.
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5.6 Discussion

The parameters involved in the parametric lnvestlgatlons

"were (1) thermal diffusivity of the nutrient materlal, {2) power
rating of the heater, (3) control temperatures,r(4) initial systems
temperature, and (5) container dimensions.

A +40% change in thermal diffusivity caused a +4 to -10F
change in the average temperature after 1 hourifor the smaller
container. Also a -0.4 to + 0.8 hr delaf in achieving the minimum
required average temperature of 140F resulted. " The most interesting
result (Fig. 5.3) shows that a reduction in heat flux by a factor
of 8 increases heating time only marginally.

The effect of independently varyihg the lower or upper heater
control temperature (Fig. 5.4 and 5.5) have only a small effect on
heating time. However, as expectedf adjusting the level of the
control while keeping the difference between the upper and lower
temperatures constant has'considerable'effect (Fig. 5.6).

The effect of initial temperature  is qualitatively predics
able. The lower the-initial temperature, the longer the time
'required to heat the nutrient materiai. The significantly longer
time required to heat "frozen" foods could represent a problemn.

fhe above results can be summarized to show the effect of
initial temperature, normalized thermal diffusivity, and the size
parameter respectively. Figure 5.8 indicates the time' required
for the average temperature to reach 140F ‘when the various parameters

are varied independently from the standard configquration.
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APPENDIX A
ADAPTATION OF BLC_ER'S SOLUTION TO REQUIRED SOLUTICN

Olcer [3] solves the proklem of the unsteady temperature dis-
tribution in a right circular solid cylinder Qf.’ finite léngth with
-its entire surface subjected to boundary condift':ionS of the second
kind (heat flux). The three—dimensional. transient solution has

the form (quantities are defined in nomenclature and following):
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T(r,®, z,t) = Ti(r,cg’,z)rdrdtpdz
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where -

| F, .F,,F; are the fluxes at the
Erespectively. _ |
g” is the internal heat source
The dot notation {°) indicates
time.

i

The eigenvalues, X , are given
n )
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where HLmR z 0 is the nth root of
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bottom, top, and radial surfaces,
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function.

the derivative with respect to

by
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denotes differentiation with respect to the argument.
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Py (x,®,2,t)

Too (X, %, 2,t)

Tos (rrtprzrt)

fn (F1 )

fn (Fp)

fn (Fa)

where axial symmetry implies

In particular, for the
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-whete b R > 0 is the mth root of
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For the first heating period the initial

and

Ti(r,z) =.Ti

so that the first integral is equal to Ti and

involving Ti vanishes (by A-3).
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APPENDIX B

COMPUTER PROGRAM DESCRIPTION FOR ANALYTICAL SOLUTION
‘ DISCUSSED IN SECTION 3.0

-

(For Infinite Cylinder)

The computer program'has essentially four segments:

a) Input and Initialization
b) The Heating Phase

c¢) The Insulated Phase

d) Output

These four segments can be characterized as follows:
a) TInput and Initialization

‘The size (R) of the cylinder, the thermo-physical properties
of the food (o,c,k), the heater flux (q,), the initial tempera-
ture (T;), the temperature ranges desired (Thins Tpayx! @nd the
time increment (At) are required data.

b) The Heating Phase .

The time is set to zero, then incremented until the wall
(the hottest point) temperature reaches the maximum allowable
temperature. Temperature distributions at selected times are
stored as the cylinder heats. The final temperature distribu-
tion becomes the initial temperature distribution of the insu-
lated phase. :

¢) The Insulated Phase

The time is set to zero; then incremented until the wall
temperature drops to the minimum temperature. Temperature
distributions at selected times are stored as the wall tempera-
ture drops. The cold point temperature is checked to see if
the food has been heated to the minimum temperature. The final
temperature distribution becomes the initial temperature distri-
bution of the next heating phase. :

d) Output

Desired temperature profiles, mean temperatures, cold spot
temperatures, and hot spot temperatures are printed.

Figure B.1 is a simplified flow diagram of the computer program.

The letters to the right correspond to the phase described above.

£3<.



Input:

- — o] - Y0 .
R, a, c. k, dg, Ti. T = 150 Ff Tmin = 135°F, At | {a)

mag

‘gt

[ Heater on, g, = qo [

t
Twall = T(R,0,t), eg. 3-4

<Twall = Tmax : Yesl o f (b)

Ti{r,z) = T(r,z,t), eq. 3-4

-4

‘IHeéter-off, do = 0]

4
= T(R,0,t), eg. 3-4

Twall

It = £ + Atls No

. _ .
rd T N >
‘;Ewall = min/ Yes o (c)

T{0,0,t), eq. 3-4 |=

T .
| cold spot

t, = t, T t
7 j -1

No Yes

/ N
\\Tcold spot z Tmin/ﬁf

— T (r,2) = T(r,z,t), eq. 3-4

¥
(i =13 +1]

t = i
total tj

E Figure B.1l -
BN Simplified Flow Chart.  &@a%€
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APPENDIX C

-

COMPUTER PROGRAM DESCRIPTION FOR NUMERICAL SOLUTION
DISCUSSED IN SECTION 3.0

{Without Thawirng) -

The program follows closely the path outlined in Appendix
B. Figure C.l is a simplified flow diagram of the computer

program.
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